Time-Periodic Solutions of Advection-Diffusion Equations on Moving Hypersurfaces
نویسندگان
چکیده
In this paper we study time-periodic solutions to advection-diffusion equations of a scalar quantity u on a periodically moving n-dimensional hypersurface Γ(t) ⊂ Rn+1. We prove existence and uniqueness of solutions in suitable Hölder spaces.
منابع مشابه
Time periodic traveling wave solutions for periodic advection–reaction–diffusion systems
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a class of periodic advection–reaction–diffusion systems. Under certain conditions, we prove that there exists a maximal wave speed c∗ such that for each wave speed c ≤ c∗, there is a time periodic traveling wave connecting two periodic solutions of the corresponding kinetic system. It is s...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملGeneralized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability
We prove existence, uniqueness, and stability of transition fronts (generalized traveling waves) for reaction-diffusion equations in cylindrical domains with general inhomogeneous ignition reactions. We also show uniform convergence of solutions with exponentially decaying initial data to time translates of the front. In the case of stationary ergodic reactions the fronts are proved to propagat...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملWavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction
We consider a system of coupled partial differential equations modeling the interaction of mussels and algae in advective environments. A key parameter in the equations is the ratio of the diffusion rate of the mussel species and the advection rate of the algal concentration. When advection dominates diffusion, one observes large-amplitude solutions representing bands of mussels propagating slo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2015